Roll No.

#rilmagnina Hillari I

328554(28)

B. E. (Fifth Semester) Examination, Nov.-Dec. 2021

(New Scheme)

(Et & T Branch)

DIGITAL COMMUNICATION

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) is compulsory from each question & carries 2 marks.

Attempt any two parts of part (b), (c) and (d) of each question & carrying 7 marks.

Unit-I

1. (a) What happen when an analog information signal is sampled at less than the Nyquist rate?

2

	[2	}

	(b)	What is the necessity of non-uniform quantization? Explain companding.	7
	(c)	Explain typical PWM system. How PWM signal converted to PPM signals?	7
	(d)	Describe the working of 24 channel digital multi- plexers used in T-carrier system. Compute the band- width at each output stage of the system.	7
		Unit-II	
2.	(a)	List two unique features offered by delta modulation.	2
	(b)	Derive an expression for signal to noise ratio in PCM.	7
	(c)	A Delta modulation system is designed to operate at 5 times the Nyquist rate for a signal with 3 kHz bandwidth. Determine the maximum amplitude of a 2 kHz input signal (sinusoidal) for which the delta modulator does not have the slope overload condition. Quantization step size is 250 mV. Derive the formula that you use.	7
	(d)	Explain the working of CVSD modulator with the help of functional block diagram.	7

[3]

Unit-III

3.	(a)	The binary sequence 10101010101010 is transmitted over a baseband channel. Draw the waveform for the transmitted data using unipolar NRZ	
		line encoding format.	2
	(b)	List out and explain the various properties of line code.	7
	(c)	Derive an expression for error probability of polar signal.	7
	(d)	What is ISI? Describe the Nyquist criterion for zero ISI.	7
		Unit-IV	
4.	(a)	Draw ASK waveform for digital data stream 101010.	2
	(b)	Explain the generation, detection, spectrum and geometrical representation of conventional BFSK system.	7
	(c)	Explain the generation and detection of QPSK.	7
	(d)	Compare FSK and PSK systems.	7

[4] Unit-y

5.	(a) How are matched filters different from conventional
	filters?
	1355 paragraphy grown public by thoronor out to do more
	(b) Derive an expression for probability of error of
	Matched filter.
	THE PERSON OF THE SCHOOL SANDERS OF THE PERSON SANDERS OF THE
	(c) Derive an expression for probability of error for
	BPSK system.
	(1) First the representation of make higher as average (2)
	(d) Find the expression of probability of error for BFSK.
	Pat.
	Vt-tial I
	101010
	(b) Explain the generalized detection, speciminarily per-
	(c) Explaint the generations and detection of 1,0750.
	401 Compute PSK and PSK systems